Virtual Adversarial Ladder Networks For Semi-supervised Learning

نویسندگان

  • Saki Shinoda
  • Daniel E. Worrall
  • Gabriel J. Brostow
چکیده

Semi-supervised learning (SSL) partially circumvents the high cost of labelling data by augmenting a small labeled dataset with a large and relatively cheap unlabeled dataset drawn from the same distribution. This paper offers a novel interpretation of two deep learning-based SSL approaches, ladder networks and virtual adversarial training (VAT), as applying distributional smoothing to their respective latent spaces. We propose a class of models that fuse these approaches. We achieve near-supervised accuracy with high consistency on the MNIST dataset using just 5 labels per class: our best model, ladder with layer–wise virtual adversarial noise (LVAN-LW), achieves 1.42%± 0.12 average error rate on the MNIST test set, in comparison with 1.62% ± 0.65 reported for the ladder network. On adversarial examples generated with L2-normalized fast gradient method, LVAN-LW trained with 5 examples per class achieves average error rate 2.4% ± 0.3 compared to 68.6%± 6.5 for the ladder network and 9.9%± 7.5 for VAT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Ladder Networks

The use of unsupervised data in addition to supervised data has lead to a significant improvement when training discriminative neural networks. However, the best results were achieved with a training process that is divided in two parts: first an unsupervised pre-training step is done for initializing the weights of the network and after these weights are refined with the use of supervised data...

متن کامل

Virtual Adversarial Training: a Regularization Method for Supervised and Semi-supervised Learning

We propose a new regularization method based on virtual adversarial loss: a new measure of local smoothness of the output distribution. Virtual adversarial loss is defined as the robustness of the model’s posterior distribution against local perturbation around each input data point. Our method is similar to adversarial training, but differs from adversarial training in that it determines the a...

متن کامل

Adversarial Training Methods for Semi-supervised Text Classification

Adversarial training provides a means of regularizing supervised learning algorithms while virtual adversarial training is able to extend supervised learning algorithms to the semi-supervised setting. However, both methods require making small perturbations to numerous entries of the input vector, which is inappropriate for sparse high-dimensional inputs such as one-hot word representations. We...

متن کامل

Virtual Adversarial Training for Semi-Supervised Text Classification

Adversarial training provides a means of regularizing supervised learning algorithms while virtual adversarial training is able to extend supervised learning algorithms to the semi-supervised setting. However, both methods require making small perturbations to numerous entries of the input vector, which is inappropriate for sparse high-dimensional inputs such as one-hot word representations. We...

متن کامل

Learning Loss Functions for Semi-supervised Learning via Discriminative Adversarial Networks

We propose discriminative adversarial networks (DAN) for semi-supervised learning and loss function learning. Our DAN approach builds upon generative adversarial networks (GANs) and conditional GANs but includes the key differentiator of using two discriminators instead of a generator and a discriminator. DAN can be seen as a framework to learn loss functions for predictors that also implements...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.07476  شماره 

صفحات  -

تاریخ انتشار 2017